Continuous Regularization Hyperparameters
نویسندگان
چکیده
Hyperparameter selection generally relies on running multiple full training trials, with hyperparameter selection based on validation set performance. We propose a gradient-based approach for locally adjusting hyperparameters during training of the model. Hyperparameters are adjusted so as to make the model parameter gradients, and hence updates, more advantageous for the validation cost. We explore the approach for tuning regularization hyperparameters and find that in experiments on MNIST the resulting regularization levels are within the optimal regions. The method is significantly less computationally demanding compared to similar gradient-based approaches to hyperparameter optimization and consistently finds good hyperparameter values, which makes it a useful tool for training neural network models.
منابع مشابه
Scalable Gradient-Based Tuning of Continuous Regularization Hyperparameters
Hyperparameter selection generally relies on running multiple full training trials, with selection based on validation set performance. We propose a gradient-based approach for locally adjusting hyperparameters during training of the model. Hyperparameters are adjusted so as to make the model parameter gradients, and hence updates, more advantageous for the validation cost. We explore the appro...
متن کاملHyperparameter optimization with approximate gradient
Most models in machine learning contain at least one hyperparameter to control for model complexity. Choosing an appropriate set of hyperparameters is both crucial in terms of model accuracy and computationally challenging. In this work we propose an algorithm for the optimization of continuous hyperparameters using inexact gradient information. An advantage of this method is that hyperparamete...
متن کاملEfficient multiple hyperparameter learning for log-linear models
In problems where input features have varying amounts of noise, using distinct regularization hyperparameters for different features provides an effective means of managing model complexity. While regularizers for neural networks and support vector machines often rely on multiple hyperparameters, regularizers for structured prediction models (used in tasks such as sequence labeling or parsing) ...
متن کاملExperiments With Scalable Gradient-based Hyperparameter Optimization for Deep Neural Networks
Gradient-based hyperparameter optimization algorithms have the potential to scale to numbers of individual hyperparameters proportional to the number of elementary parameters, unlike other current approaches. Some candidate completions of DrMAD, one such algorithm that updates the hyperparameters after fully training the parameters of the model, are explored, with experiments tuning per-paramet...
متن کاملBayesian and regularization methods for hyperparameter estimation in image restoration
In this paper, we propose the application of the hierarchical Bayesian paradigm to the image restoration problem. We derive expressions for the iterative evaluation of the two hyperparameters applying the evidence and maximum a posteriori (MAP) analysis within the hierarchical Bayesian paradigm. We show analytically that the analysis provided by the evidence approach is more realistic and appro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016